Discrete Fractional Order Artificial Neural Network
نویسندگان
چکیده
In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.
منابع مشابه
A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملAdaptive Synchronization of Fractional-Order Complex-Valued Neural Networks with Discrete and Distributed Delays
In this paper, the synchronization problem of fractional-order complex-valued neural networks with discrete and distributed delays is investigated. Based on the adaptive control and Lyapunov function theory, some sufficient conditions are derived to ensure the states of two fractional-order complex-valued neural networks with discrete and distributed delays achieve complete synchronization rapi...
متن کاملIdentification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملGENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کامل